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On Asymmetric Stochastic Bang-~Bang Control
by

Howard J. Weiner

I. Introduction

Thres stochastic bang-bang control problems are considered, the
predictad miss, the linear regulator, and a simple complete observation
model (f1},{2],[3]), which have been solved for symmetric constant boun&
on the control function u(t) »,0<t S.T. Here asymmetric, finite
bounds on u(t) are considared.
i To state these probleﬁs we use the notation and definitions of
¥ ([11,[21,(3D). ]

I1. Predicted Miss

1 Let A(t), B(t), C(t) be, respectively, dxd, rxd, and dxd matrix-~

valued continuous functions on [0,T] with

{a,c(t)c’' (t)a) > Bla,a) >0

' d
for all t € [0,T} and @ € B’, where (a,b) = T ab, .
i=1




3

Denote the system equation by

dX(t) = A(t)X(t)dt + B(t)u(t)dt + C(t)dW(ct)

X(0) = ¢ € g% (1)

and W(t) is standard d-dimensional Wiener process. Transpose A is indicated

by A'.

Assumption: The admissible control set consists of the set
of processes

u(t) = u(t,w) such that - ® < a < £(t) Su(e,w) < g(!;) <bg@®
where f£(t) < g(t) are bounded continuous non-random given functions on
[0,T] , and £(0) + g(0) = O.

The Girsanov Theorem may be used to solve (1) in law (i.e. there
is a weak solution. The boundedness of u(t,w) insures that for any
given u € C, there is a unique solution to (1) by ([4]), Theorem 1).

Given a fixed vector Y, the cost corresponding to u €Cis
J(u) = E (4 YX(T)>)

where for each u, there is a probability space (Q,F,Pu) with
Q= cd[o,'r], X(e,w) : Q- Rd is the coordinate map X(t,w) = w(t).
Then for u € C, Pu on ( Q,F), vhere F = 0 (X(s), 0 < s < T) is such that

Pu[X(O)-G] = 1 and the process W(t,u) defined by

Ot -1 t -1
wew = [ e - [ ctmnexemeuea 1

d-dimensional Wiener process. Hence

J(u) = J.nz(<y,xcr)>) df, = E LY, X(T)>).

where

L : R~ R+ has these properties:




(i) £ is even : £(x) = L(-x).

(i1) 2 is continuously differentiable for x > 0
and L£'(x) >0all x>0
(iii) £(x) = O(exp 5[x[), some 6§ > 0.
The object is to find optimal uo(t) such that
J(uo) = min J(u).
u€Q

Continuing the exposition in [2], if X(t) = x, and u(3) = 0,

t<§<T,
then
ELY,X(M|X() = x] = (y, 2'(c,T)x)
where 9 1is the solution operator for (1) when u = 0.
Define

s(z) = d'(c,T)Y. ' q

Then s(t) satisfies

e

4l8) - areds(r), s =Y.

and
E [{Y,X(T))X(e)] = (s(t),X()) ® m(c).

Then m(t) satisfies

dm(t) = {B'(t)s(t), u(t))dt

+ {C'(t)s(t), dW(t,u))

or, equivalently,

dm(t) = {(b(t), u(t)dde + dv(ct)

m(0) = {s(0), G). ).




The cost is expressed as
J(u) = E [£(=(T))]

Theorem 1 Under conditions above in II, the optimal control uo(t) is

expressible by components, 1 < i € d, with uy = (u’01,...u0d),
as
£,(t) + g (c)
i i
ugy (8) = 2
(g, (&)-£,(t)) . , 8 T -
- ———5—— sign Um(®) - 3 ‘Eljtb‘(S) (f‘(S)ﬂz(S))dSIki(t)D (3)

Proof. First assume fi(t) + gi(t:) 20, all1 1 < i< dand set

h, (%) = By (®) - £,(2)
2

In this case, note 0 < hi(t) < ‘a‘+|bl » 1 <1< dand by [4], since

|ui(t)‘_<_ hi(r.), then (2) has a unique solution with u = uge

Set

dm(t) = (b',u')'dt + dv then it follows by the same argument

as in [é] tt:xat

u°1(t) - ,-(h:l.(t) sign (m(t)bi(t)). 4)

is optimal for the symmetric cozitrol case. In general, by the argument

of ([2], pp. 207-208), one may invoke symmetry by utilizing a

ey




switching curve k(t) such that if

;(t) # m(t) - k(t), ;;hen it would follow that
dm(t) = {b,u - %x)dc + dv(t).

To accomplish (3) it clearly suffices to set

Codk(e) 1

4
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and " k(T) = O,

which allows J(@(T)) = J(m(T)).

Hence (4) - (6) suffice for the proof of (3).

III. Liaear Regulator.

A one-dimensional linear regulator problem, following [3] is

defined as follows: The one-dimensional process X(t,w)is
given by

axX(t,w) = (aX(t,w) + u(t,w))dt + & (£,w)

with
X(0,w) = xocw)

and observation equation

dy(t,w) = cX(t,w)dt + sz(c,w)

and

Y(O,w) = 0
for

0<t<T
where

a> 0, ¢> 0 are constants, Vv"z are independent

- (5)

(6)

)




one-dimensional Wiener processes. Let (Q,F,P;’, ) be Q= C[O0,T],

¥ = o(X(s), 0< s <T), and P correspond to "1’“2'

Let the performance index, as a function of a given control u be
T

x%(s,u)aP ' (8)

»n

T
1@ = [ 2aP(s))as = J,
0

and the set of admissible controls @ is given by

@ {u] Ju(e,w)| <g(t), O0<t<T, )

with continuous g(t) >0, U< t<T.

A control Uo €3 is optimal if
J(uo) < J(u) all u € C.

This problem may be recast as a complete observation control problem,

following (I3}, eq. (3.19) - (3.21)). The new state variables are

R(t,w) and satisfy

dR(t,w) = (aR(t,w) + u(t,w))dt

+ ¢ p(t) dw3(t:,w)

T 2
and J(u) -J E(R"(s))ds (10)
(1] ‘
vwhere w3 is a Wiener process, and the function p(t) satisfies a
Riccati equation
42 - 2ap(e) + 1 ~e2p2(e) 0<e<T

PO) = EXy?) - (@X)? m varx,. (L)




The admissible control set '@ is unchanged and it is noted that (1l1)

does not depend on @ by ([3], eq. (2.15) - (2.20)).
Also J(u) = J E(R"(s))ds
0
Theorem 2 The equation, for any fixed u € Q,
av(e,w) = (av(t,w) + u(t,w))dt

+ cp(E)dW,(£,w)
V(O,w) = EXOCW) (12)

has a unique solution.

Proof. This follows from the boundedness of p, u, £, g in [0,T] by

([4], Theorem 1);

Theorem 3 The optimal u € @ for the system (10), (11) is expressible

uo(e,w) = -g(t)sizn X(E,w). | (13)

Proof. This follows since g(t) > O factors out of both sides of ([3],

eq. (2.26)), and Theorem 2.

IV Complete Obéervation

Consider a one-dimensional complete observation control problem with

state X(t,w), control u(t,w) and Wiener process W(t,w) defined by

dx(t,w) = u(t,w)dt + dw(t,w)" (14)

BRI . A’ il SR A o
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and

X(0,w) = x .

The ({1FP) are as in III.

With admissible control set

e ={u]| Jue,w)| <g(r), 0<e<T]

with continuous g(t) >0, 0< t < T, as in (9).

The performance index for given u € Q

is
T
J(u) =-I Elx(t,w)lzdt (15)
o

for & a fixed positive integer. The object is to find U €a

so that

J(uo) < J(u), u €aQ.

For & = 1, 2, this probiem was solved in [1].

Theorem 4 Under (9), (14), (15), for all £ > 1, the solution is

ug(c,q) = -g(t)sign X(t,w). (16)

Proof. The equation, with X(0,w) = x
X(t,w) = ~g(t)sign X(t,w)dt + dW(t,w)
has a unique solution ([4]), Theorem 1) by boundedness of g.

The reasoning of ([1], pp. 93, 96, eq. (2.15)) implies that the same

optimal u, holds for all £ > 1 in (15). The argument is as in Theorem 3.
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